Response of the Diatom Phaeodactylum tricornutum to Photooxidative Stress Resulting from High Light Exposure

نویسندگان

  • Nuno Domingues
  • Ana Rita Matos
  • Jorge Marques da Silva
  • Paulo Cartaxana
چکیده

The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII) D1 protein (the main target of photoinhibition) in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL) acclimated cells (40 µmol photons m(-2) s(-1)) subjected to high light (HL, 1,250 µmol photons m(-2) s(-1)) showed rapid induction of non-photochemical quenching (NPQ) and ca. 20-fold increase in diatoxanthin (DT) concentration. This resulted from the conversion of diadinoxanthin (DD) to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC), a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (F(v)/F(m)), showing a reduction of active PSII reaction centres. Partial recovery of F(v)/F(m) in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean.

The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensin...

متن کامل

Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide

The marine diatom Phaeodactylum tricornutum is an important basal resource in the marine food chain and is used as a standard test organism in toxicological studies. In this study, in vivo experiments were performed to analyze the effects of 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on the growth, photosynthetic activity, and antioxidant enzymes of P. tricornutum using 96 h growth tests i...

متن کامل

Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum

Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemi...

متن کامل

Aureochrome 1a Is Involved in the Photoacclimation of the Diatom Phaeodactylum tricornutum

Aureochromes constitute a family of blue light (BL) receptors which are found exclusively in heterokont algae such as diatoms (Bacillariophyceae) and yellow-green algae (Xanthophyceae). Previous studies on the diatom Phaeodactylum tricornutum indicate that the formation of a high light acclimated phenotype is mediated by the absorption of BL and that aureochromes might play an important role in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012